
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 3141–3158

www.elsevier.com/locate/jcp
Flux limiting embedded boundary technique
for electromagnetic FDTD

M.T. Bettencourt *,1

Air Force Research Laboratory, Kirtland Air Force Base, Albuquerque, NM 87117, United States

Received 27 February 2007; received in revised form 8 November 2007; accepted 15 November 2007
Available online 15 December 2007
Abstract

A general approach for incorporating embedded boundaries into an electromagnetic finite difference time domain
(FDTD) code is presented. This algorithm is shown to satisfy Gauss’s law and enforces no magnetic monopoles while
maintaining a globally second-order result (first-order at physical boundaries), with no added time-step restriction. The-
oretically predicted superior results are shown with an 11% time-step reduction from the Courant stability limit. This is
achieved through a physics-based flux limiting scheme near physical boundaries. Stability, local truncation error and
energy conservation analysis are also provided.
Published by Elsevier Inc.
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1. Introduction

The finite difference time domain (FDTD) technique for solving Maxwell’s equations has been a very pow-
erful tool in the simulation of electromagnetic phenomena since its introduction by Yee [1]. Computational
efficiency, ease of implementation, second-order accuracy (in the absence of physical boundaries) and energy
conservation are among the method’s many positive qualities. Furthermore, this scheme can be extended to
include plasmas with particle-in-cell (PIC) techniques. However, a key weakness of the scheme is the low order
boundary representation of physical geometry which can drop the global accuracy of the method to first-order
for many physical geometries.

There have been many attempts to mitigate the errors caused by stair-cased boundaries in FDTD simula-
tions through both the use of unstructured grids and solving Maxwell’s equations on cut cells embedded in an
otherwise structured grid. While fully unstructured grids are the mainstay in frequency domain codes, they are
making inroads into time domain applications both for finite vols [2], finite element methods [3] and for spec-
tral element codes [4]. These methods offer the flexibility of unstructured gridding, however they are more
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complicated to implement, can suffer from long-time instabilities [5] and the incorporation of particles into
these simulation techniques [6] is an unresolved area of research.

Several modifications to the standard FDTD algorithm have been proposed which maintain the inherit sim-
plicity in the bulk of the domain and require special attention only adjacent to physical boundaries. The first
of these is the scheme of Dey and Mittra [7], where the time-step is reduced and fractional cells of a sufficient
size are handled through the standard algorithm. The work by Yu and Mittra [8] removed the time-step
restriction required by [7], however, as shown in [9], the Yu–Mittra algorithm has a lower level of accuracy
than the Dey–Mittra scheme. Benkler et al. [9] proposed a modified scheme similar to Yu–Mittra which sim-
plified the computation and incorporated a reduced time-step to improve accuracy through improved account-
ing of the magnetic field area. The Benkler scheme shows improved accuracy over the Dey–Mittra and Yu–
Mittra schemes listed above. Contour methods originally proposed by Jurgens et al. [10] modify the standard
FDTD by using the integral forms of Maxwell’s equations near physical boundaries. These methods, like the
Dey–Mittra scheme, require a reduction in time-step to maintain stability.

In addition to the schemes listed above there exist a class of schemes known as area borrowing algorithms
[11]. These algorithms enlarge cell volumes over a threshold by moving volume from a full cell to a partial cell
in order to stabilize small cells. This class of methods trade the numerical complexity of updating partial cells
below the stability limit with the geometric complexity of creating a set of sufficiently large cells around a phys-
ical boundary, which can be intractable in three-dimensions.

This article presents a new procedure for representing conformal boundaries within an FDTD code. This
work is inspired by the research of Berger and Leveque [12] and Colella et al. [13] where the fluxes into a com-
putational cell are redistributed based on geometric considerations. Unlike the schemes listed above, individ-
ual fluxes are limited on a face-by-face basis instead of a cell based flux redistribution.

A brief review of the traditional FDTD method proposed by Yee [1] follows. Section 3 presents a
detailed one-dimensional analysis the stability, accuracy and energy conservation properties of the proposed
method. Section4 extends the one-dimensional algorithm to multiple dimensions. Results showing second-
order accuracy are presented for simple cavity problems and qualitative results are given for more complex
geometries.

2. Standard finite difference time domain

We start with Maxwell’s equations shown in differential form,
oB

ot
¼ �r� E ð1aÞ

oD

ot
¼ r�H� J ð1bÞ

r � B ¼ 0 ð1cÞ
r �D ¼ q ð1dÞ
B ¼ lH ð1eÞ
D ¼ �E ð1fÞ
where E and H are the electric and magnetic fields respectively, D and B are the electric and magnetic flux
densities respectively and l, �, q and J are the material permeability, permittivity, charge and current densities.
The speed of light, c ¼ 1ffiffiffi

l�
p , is defined for convenience. Values written as V are assumed to be vectors of the

form ðV x; V y ; V zÞ.
The standard finite difference time domain (FDTD) solves these equations in a leap-frog method on a stag-

gered grid as shown in Fig. 1. This leads to the standard update equation:
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Fig. 1. Three-dimensional Yee mesh.
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and similar equations for the remaining two B and E components. These equations are stable if
Dt 6
1

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Dx2 þ 1

Dy2 þ 1
Dz2

q ð4Þ
This formulation has the property of discretely satisfying the divergence constraint. Furthermore, by applying
the Poynting theorem to the discrete equations it can be shown that this algorithm conserves energy in the
discrete sense if one neglects temporal interpolation errors which do not accumulate in time.

The algorithm described above assumes that all cells are the same size and physical geometry is approxi-
mated with a stair-cased representation. The remainder of this paper documents a procedure where physical
geometry can be represented with a piecewise linear boundary while maintaining many of the properties of the
original scheme. Furthermore, the remainder of the document will assume an isotropic grid with normalized
spatial parameters and no source terms as follows:
Dx ¼ Dy ¼ Dz ¼ h

l ¼ l0 � ¼ �0 c ¼
ffiffiffiffiffiffiffiffiffi

1

l0�0

s
ð5Þ

J ¼ q ¼ 0
3. One-dimensional theory

The one-dimensional discrete form of Yee’s method is shown in (6a) and (6b). Integer cell indices refer to
the edge of grids (location of E) and fractional indices refer to cell centered values (location of B) as shown in
Fig. 2.



Fig. 2. Representation of grid centering and dimensional parameters. E values live on the cell edges where B values live in the centers of the
cells, both for the full and fractional cells.
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The well-known stability limit for these update equations is based on the Courant Friedrichs Levy (CFL) con-
dition, c ¼ cDt

h < 1, assuming a uniform mesh spacing. It turns out one can stably reduce the mesh spacing
adjacent to a perfectly electrically conducting (PEC) boundary to roughly 71% (a ¼ 1ffiffi

2
p in Fig. 2, where a is

the fractional cell percentage) without incurring a time-step penalty. Starting with the one-dimensional update
equations for the fractional cell:
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which can be combined into two equivalent second-order forms:
B
nþ3

2
1
2

� 2B
nþ1

2
1
2

þ B
n�1

2
1
2

Dt2
¼ c2 2

aðaþ 1Þ
B

nþ1
2

3
2

� B
nþ1

2
1
2

h2
ð8aÞ

Enþ1
1 � 2En

1 þ En�1
1

Dt2
¼ c2 2

aðaþ 1Þ
aEn

2 � ð1þ aÞEn
1

h2
ð8bÞ
Following the procedure illustrated in Taflove [14] and using the basis functions B ¼ B0e�iðxt�kxÞ and
E ¼ E0e�iðxt�kxÞ yields the following stability criteria:
�1 < 1þ c2 1

a aþ 1ð Þ ðe
ikh � 1Þ < 1 ð9aÞ

�1 < 1þ c2 1

aðaþ 1Þ ðaeikh � ð1þ aÞÞ < 1 ð9bÞ
Eqs. (9a) and (9b) represent an upper bound on the stability limit and help to provide insight into the stability
of the numerics. However, due to the non-constant stencil one must use an eigenvalue analysis to determine
the true stability limit. It can be seen from (9a) and (9b) that the kh ¼ p, or checker-board, mode is the most
critical mode with respect to stability. Restricting the analysis to this mode allows one to perform an eigen-
value analysis with a partial matrix. For the checker-board mode, each full cell has the same magnitude of
B, but an opposite sign. This is equivalent to a Neumann boundary condition for B, and thus making
B5

2
¼ �B7

2
. Therefore, one only needs to represent the cells directly affected by the cut cell with the remaining

cells being folded into a boundary condition in the matrix. This is expressed in matrix form below:
� 2c2
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aðaþ1Þ 0

2c2

aþ1
� c2ðaþ3Þ

aþ1
c2

0 c2 �3c2

2
664

3
775� kI ¼ 0 ð10Þ
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Fig. 3. Cell fraction as a function of CFL condition.
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Solving for the eigenvalues and setting the smallest one to the stability limit [14], kmin ¼ �4, yields the follow-
ing expression for al (the lowest alpha which can be stably advanced without any modification) as a function
of c.
al ¼
�8þ 12c2 � 4c4 þ

ffiffiffi
2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c10 � 8c8 þ 32c6 � 24c4 � 32c2 þ 32
p
2ðc4 � 8c2 þ 8Þ ð11Þ
Fig. 3 is the minimum cell fraction plotted against c as predicted by (11). In addition to the eigenvalue solu-
tions, the predicted stability curves for (9a) and (9b) are also plotted. Results from an experimental one-dimen-
sional code are also plotted showing excellent agreement to the eigenvalue theory.

Previous cut-cell methods have achieved stability by reducing the time-step. This allows for the represen-
tation of more of the physical geometry, and exchanges computational effort for accuracy, a technique which
offers limited improvement. By lowering the time-step, one not only requires more time steps to be computed,
one also decreases the accuracy of the method due to the increase in dispersion of the method, [14]. In essence,
one trades geometric errors for dispersive errors. The proposed flux limiting scheme improves on existing cut-
cell schemes by achieving the required stability for all cut cells without imposing a reduced time-step and
increasing dispersion error.

To help understand the flux limiting stabilizing algorithm, it is convenient to view the update in a conser-
vative form:
oB

ot
þr � FB ¼ 0 ð12Þ
where FB is the flux of B entering a volume. In the case of one-dimensional Maxwell’s equations, the flux is just
Ey . In three-dimensions the flux is
FB ¼
0 �Ez Ey

Ez 0 �Ex

�Ey Ex 0

2
64

3
75 ð13Þ
To stabilize the scheme listed above across all a’s, one can limit the fluxes entering a fractional cell. It is suf-
ficient to linearly decrease the flux of B into a cut cell from the minimum a where the standard scheme goes
unstable, al as shown in (14).
F B ¼
Ey a > al

Ey
a
al

a <¼ al

(
ð14Þ



3146 M.T. Bettencourt / Journal of Computational Physics 227 (2008) 3141–3158
To show this, one modifies (10) to take into account the effect of the limited flux, FB.
Fig. 4.
�4 are
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Here al is the solution to the eigenvalue stability equation (11). This yields a modified stability diagram as
shown in Fig. 4, where the smallest eigenvalue is plotted against a for various c’s. Since all values of the eigen-
values are in the desired range, [�4,0], the scheme is determined to be stable across all a’s and c’s less than
unity.

The prior analysis assumed a semi-infinite domain extending from a cut cell. If this is reduced to the limiting
case, a geometry with only two cut cells, an eigenvalue analysis can be performed. This results in two eigen-

values, 0 and �2c2

aLaR
, where aL and aR are the left and right cell fractions, respectively. This problem can be sta-

bilized by limiting the flux of B as follows:
FB ¼ min
2aLaR

c2
; 1

� �
E ð16Þ
This scheme stabilizes one-dimensional FDTD algorithms so that they can handle cut cells. However, this is
only beneficial if it improves the quality of the solution and, ideally, maintains second-order convergence in at
least the L1 norm, where the norms are defined as
L1 ¼ maxðjBexact � Bn
i jÞ

L1 ¼
PNX

i¼0ðjBexact � Bn
i jaiDxÞPNX

i¼0aiDx
ð17Þ

L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNX
i¼0ððBexact � Bn

i Þ
2aiDxÞPNX

i¼0aiDx

s
:

One can compute the theoretical order of convergence using a modified equation analysis. The truncation er-
ror s is the difference between an exact solution for B and the discrete update of that exact solution for one
time-step, normalized by the length of the time-step.
s ¼
B

nþ3
2

exact
ah
2

� �
� B

nþ3
2

1
2

B
nþ3

2
exactDt

ð18Þ
One can calculate the discrete update for B
nþ3

2
1
2

as follows:
B
nþ3

2
1
2

¼ B
nþ1

2
1
2

� aDt
a0;lh
ðEnþ1

1 Þ ð19aÞ
Flux limited one-dimensional stability plot showing the smallest eigenvalue for the modified Eq. (15). Eigenvalues between 0 and
stable.
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a a > al
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ð19dÞ
Assuming one knows all values for B at times less than nþ 3
2

one can insert (19c) into (18) to compute the trun-
cation error, s. Using the exact solution:
Bðx; tÞ ¼ eiðxtÞ cosðkxÞ ð20Þ

yields
s ¼
eixDt � 2þ e�ixDt � c2 2aDt2

a0;lð1þaÞh2

cosðk2aþ1
2 hÞ

cos kah
2ð Þ
� 1

� �
Dt

ð21Þ
Substituting in sines and cosines for the complex exponentials yields
s ¼
�4 sin2 xDt

2

� �
� c2 2aDt2

a0;lð1þaÞh2

cos k2aþ1
2 hð Þ

cos kah
2ð Þ
� 1

� �
Dt

ð22Þ
Assuming that you are adequately resolved, therefore kh� 1 and xDt� 1 one can expand the sine and cosine
functions yielding
s ¼
� xDtð Þ2 þ c2 2aDt2

a0;lð1þaÞh2
ð3aþ1Þðaþ1Þ

8
ðkhÞ2

� �
þOðh2;Dt3Þ

Dt
ð23Þ
Noting that x
k ¼ c and simplifying results in
s ¼ �x2Dt 1� að3aþ 1Þ
4a0;l

� �
þOðh2;Dt2Þ ð24Þ
The standard argument [15] is that if one maintains first-order accuracy on a domain one-dimension lower
than the problem domain (assuming that the lower order domain is not along a characteristic path), the global
solution will be first-order accurate in the L1 norm, second in the L1 norm and somewhere in the middle for
the L2 norm. For cell fractions between zero and unity, 0 6 a < 1, the method converges at a rate of OðDtÞ,
thus satisfying the criteria above for a global second-order solution. It is important to note, that for a! 1 the
first-order term drops out and with c! 1 the method becomes exact.

The L1 norm of the truncation error was verified for the one-dimensional problem of length l with the ini-
tial condition of Bðx; 0Þ ¼ cos 2p x

l

� �
. The results were plotted for several values of a and refinement and are

shown in Fig. 5. These results show that the truncation error follows the first-order line very closely and thus
satisfies the criteria for second-order convergence.

A comparison of the one-dimensional cut cell algorithm with a standard stair-stepped boundary method for
a Gaussian pulse over a simulation time of 5L

c and a full range of cell fractions with a c ¼ 0:9999 and a
al ¼ 0:707 reveals that the cut cell algorithm is superior for all a’s as shown in Fig. 6.

A refinement study was performed for the one-dimensional test code, in which the physical problem size
was held fixed while more cells were added to the problem domain, thus reducing the effect of the stair-cased
boundary. Fig. 7 shows that the cut-cell solution closely follows the second-order reference line, whereas the
stair-cased solution varies widely depending on how the problem edge is aligned with the stair-cased edge, but
is approximately first-order. The L1 norm shows better than expected convergence, this is due to the combined
effect of both increasing the resolution and increasing a as one refines the problem, thus reducing the effect of
flux limiting in the cut cell.
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The Poynting theorem (25) states the principle of conservation of energy ðW Þ for an electromagnetic field in
the absence of currents.
oW
ot
¼ r � Sþ E � oD

ot
þH � oB

ot
¼ 0 ð25Þ

S ¼ E�H
One advantage of the original Yee scheme is that it conserves energy; while the modified scheme possesses a
lower error, it no longer conserves energy. The discrete forms of the time derivatives are inserted into (25) and
the equation is integrated across the two cells adjacent to the wall yielding
oW
ot
¼ a� a0;l

a0;l

E1 B3
2
� B1

2

� �
ð26Þ
It is important to note in (26) that if limiting is turned off ða0;l ¼ aÞ that this reverts to energy being conserved.
Furthermore, while this scheme is not strictly energy conserving, any wave coming into a fractional cell will be
reflected with the same sign of B, but an opposite sign on E, and therefore, the time averaged energy loss/gain
is zero due to cancellation. This is shown in two-dimensions in the next section.

4. Multi-dimensional analysis and results

One-dimensional analysis showed the proposed scheme for approximating cut cells in FDTD codes was sta-
ble and converged globally second-order while not requiring any time-step restrictions. In this section, the
scheme and analysis will be extended to two-dimensions.

4.1. Two-dimensional analysis

The analysis in this section mirrors that of the previous section and the notation follows that outlined in
Fig. 8. Here, ax; ay are the length fraction for the x and y edges. Ai;j is the area of the cell spanning from
ðxi; yjÞ ! ðxiþ1; yjþ1Þ which is not covered in PEC.

The update equations in the fractional cell are as follows:
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Fig. 8. Representation of grid centering and dimensional parameters for a cut two-dimensional grid.
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Substituting (27b) and (27c) into (27a) results in a second-order update equation for B:
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From (28), one sees that the stability of the update depends on the neighboring areas. Furthermore, the smal-
ler the area, the more strict the stability criteria, i.e., the cell with smallest area has the most strict stability
criteria when compared to a neighboring cell. In Fig. 8 cell D would have a stricter stability criteria than either
cell A or E. If, for the time being, we neglect regions where the surface normal changes sign in the direction of
differencing (the X direction in Fig. 8 for cells G and H), we can assume that the neighboring area is at least
axh

2 for the upper cell and ayh
2 for the cell to the right of the cell of interest. Using the standard definition for

the CFL condition in two-dimensions, c ¼ cDtffiffi
2
p

h
, yields the following update equation:
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If in (29) we consider the average value of a, �ax;iþ1
2;j
¼ ax;i;jþax;iþ1;j

2
, one of which is zero for a triangle, we find
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The two components making up the right hand side of (30) are identical to the right hand side of (8a) with half
the magnitude. Therefore, the right hand side of (30) represents two matrices which can be stabilized as in the
previous section to have eigenvalues ranging from [�2,0]. Intuitively one would assume the eigenvalues of the
sum of these two matrices would have eigenvalues less than, or equal to, the sum of the eigenvalues of each of
the matrices (a range of [�4,0]). This hypothesis was tested discretely for all valid values of 0 < ðax; ay ; cÞ < 1
with 0.0025 increments. It was shown the range of eigenvalues of the sum of the matrices was indeed less than
or equal to the sum of the eigenvalues of the individual matrices. Therefore, one only has to apply the one-
dimensional limiters as defined in the previous section to both components of the B update Eq. (27a), and
the result is stable.

This analysis holds for triangle cells. In trapezoidal cells, limiting only needs to occur in the direction N limit

in Fig. 8 for cell F. If the cell is further enlarged to only cut off one corner of the uncut cell (Fig. 8 cells A and
E), no limiting is required.

Special attention is required for the case when the normals of adjacent cells point toward each other in a
single dimension (Fig. 8 cells G and H). This case resembles the one-dimensional problem with only two cells,
both of which are cut. Applying the limiter (16) at half the magnitude in the direction where the normal
reverses stabilizes this special case. This allows for the handling of long, thin cavities. The results of such a
test are shown in Fig. 18c in the next section.

Most of the results of the one-dimensional analysis in the previous section still hold true for the two-dimen-
sional case. There is no requirement to reduce the time-step below the CFL limit. The multi-dimensional local
truncation error can be computed using the modified equation as was performed in the previous section. This
is obtained by substituting the update equation (28) into (18) with the following exact solution for parallel flat
plates:
Bðx; tÞ ¼ eiðxt�kkgÞ cosðk?fÞ ð31Þ

where kk is the wave number parallel to the boundary and k? is the wave number perpendicular to the bound-
ary, g and f are the corresponding coordinates parallel and perpendicular to the boundary. This solution rep-
resents a standing wave normal to the boundary and a traveling wave along the boundary. When the
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exact solution is substituted into the discrete update equation one ends up with a local truncation error as
follows:
s ¼ Oð1Þkk þOðDtÞ ð32Þ
showing that there is an error that is order unity for waves moving along the boundary, but order Dt perpen-
dicular to the boundary. The effects of this will be discussed in more detail in the results section.

As mentioned in the previous section, energy is not strictly conserved. Colella et al. [13] suggest redistrib-
uting the non-conserved quantity, energy, to neighboring cells using a volume based weighting. The problem
with this approach is that it destroys the divergence free nature of the update, which is maintained by the new
scheme. This can be overcome by adding the energy back as a divergence free function, perhaps based on a
local projection satisfying the correct boundary conditions and then scaled to replenish (deplete) the lost
(gained) energy. In the tests conducted to date, this has not been an issue due to the cancellation effect on
incoming and outgoing waves. If this issue becomes problematic, such a solution technique can be employed.

It is important to note that (27b) and (27c) use a non-traditional calculation of the curl operator. Tradition-
ally, the curl is calculated from the loop integral over the control area X as follows:
Z

X
r� B � dX ¼

I
oX

B � dr ð33Þ
Numerically, if one was calculating the discrete curl of B in the x direction one would use the following in
three-dimensions:
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However, if one assumes that Ax;iþ1
2;j;k
¼ DyDz this reduces to the finite-difference form for the curl operator:
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On the border of cut cells, we can approximate the Dy as follows:
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This representation of the curl operator, used in (27b) and (27c), reduces to the traditional scheme for uncut
cells and represents a difference in B at points within the cells and is required to ensure stability of the scheme
outlined in this document. If one assumes a constant B within cells adjacent to cut surfaces one can arbitrarily
pick points within the cells to be used in differencing for the E update and still obtain locally first-order accu-
racy. Therefore, one can maintain a difference normal to the E edge by adjusting the points accordingly. Fig. 9
shows a stencil near the cut cells, the circles represent the typical differencing points where the diamond points
represent the difference points adjacent to a cut cell with the dashed line representing the length used in the
difference equation. The choice of location for the points used for differencing is not ideal and actual location
of the difference points is not specified. The results presented in the following section validate the accuracy and
the stability of the method.

As stated previously, this method satisfies r �D ¼ 0. Matching the operator used for the cut-cell E update,
the divergence is calculated
r �D ¼ 4�

Aiþ1
2;jþ

1
2
þ Aiþ3

2;jþ
1
2
þ Aiþ1

2;jþ
3
2
þ Aiþ3

2;jþ
3
2

Eiþ3
2;jþ1

Aiþ3
2;jþ

1
2
þ Aiþ3

2;jþ
3
2

2aiþ3
2;jþ1h

 
� Eiþ1

2;jþ1

Aiþ1
2;jþ

1
2
þ Aiþ1

2;jþ
3
2

2aiþ1
2;jþ1h

þ Eiþ1;jþ3
2

Aiþ1
2;jþ

3
2
þ Aiþ3

2;jþ
3
2

2aiþ1;jþ3
2
h

� Eiþ1;jþ1
2

Aiþ1
2;jþ

1
2
þ Aiþ3

2;jþ
1
2

2aiþ1;jþ1
2
h

!
ð37Þ



Fig. 9. Illustration of points used in differencing for the magnetic fields. Points represented with circles are for the bulk of the domain,
points represented with diamonds are for differences near cut cells, dashed lines represent the lengths used in the differencing.
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In regions of uncut cells this reduces to the standard four-point stencil. In regions adjacent to cut cells, (37)
represents the finite volume approximation of the divergence with the ratio of area to length representing an
approximation of the cross-sectional area.

4.2. Multi-dimensional results

The algorithm was developed and tested for a series of problems, these problems were seeded with an initial
Bz and allowed to oscillate. In cases with exact solutions, the solutions were compared to the exact solution
using the multi-dimensional extension of the norms defined in (17).

The first set of tests mimicked what was done in one-dimension. In this example, a square box of length l
was rotated P

7
radians and seeded with two Gaussian pulses with an initial form of
Fig. 10
with s
represe
Bðx; y; t ¼ 0Þ ¼ e100ðx=l�0:5Þ2 þ e100ðy=l�0:5Þ2 ð38Þ

which was simulated for one oscillation period. The evolving magnetic field should return to the initial con-
dition. Error can be computed by differencing the solution after one oscillation period to the initial solution,
thus making Bexact ¼ Binitial. This test was conducted for three different cases: conformal, non-conformal first-
order, and non-conformal modified approach. The results, shown in Fig. 10, show the modified approach
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closely following the conformal test for the L1 and L2 norms whereas the unmodified Yee’s algorithm results in
a error which is nearly two orders of magnitude higher.

The modified algorithm was tested with a variety of different CFL conditions ranging from
0:05 < c < 0:9999 for the same rotated box problem. The resulting error is plotted in Fig. 11. As can be seen,
the minimum error for the L1 and L2 norms occurs at roughly c ¼ 0:89. This is because at that particular point,
the flux limiter represents a physical process, not just a numerical convenience. More specifically, at c ¼ 0:89 the
limiter, al, is one half of c, and therefore, the limiting process exactly represents the reflection of the incoming
wave off the conducting surface and back out the incoming face. Thus, the net flux of B into a cell is consistent
with physics.

The algorithm was also tested on a cylindrical cavity for a TE62 mode. The mode was initialized with the
analytic B field and allowed to oscillate for 10 periods (roughly three transit times for the cavity). The final
result was differenced with the initial condition and, as shown in Fig. 12, the convergence follows the sec-
ond-order convergence curve across six doublings in resolution. The convergence for frequency was computed
as well and the results of that are shown in Fig. 13.

In Section 4.1 the local truncation error was estimated to be of order unity for waves traveling parallel to a
cut surface, and order Dt for waves perpendicular, and this analysis is borne out by tests of the implementa-
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Fig. 11. Error in the L1, L1 and L2 norms for the modified algorithm on rotated box problem for a 128� 128 grid as a function of c
showing an optimal Courant condition of c ¼ 0:89.

10
2

10
3

Number of Mesh Points In Each Direction

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

or

L∞
L

2
L

1
First Order Reference
Second Order Reference
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tion. The local truncation error was plotted for two different modes in a cylindrical cavity, a TE02 and a TE62

and is shown in Fig. 14. The axial symmetric TE02 mode showed a first-order local truncation error while the
TE62 mode with a high axial perturbation has a near constant initial error growth.

The constant level of initial local truncation error independent of resolution seems to contradict the results
shown previously in Figs. 10 and 12, which show first-order L1 convergence. The error tends to grow at a
resolution independent rate, and then oscillate with a peak amplitude dependent on the grid resolution and
at a frequency much higher then the natural mode of the cavity. This behavior has been seen in several prob-
lems and is shown in Fig. 15 for the TE62 problem. Furthermore, if one allows the cavity to oscillate long
enough it can be seen (Fig. 16) that the order Dt error term dominates causing a linear growth with time in
the maximum error in the simulation. These effects yield a long time (greater than a few periods) first-order
convergence in the L1 norm, and a globally second-order convergence in L1.

As mentioned earlier, energy is not strictly conserved in the modified algorithm. Discrete energy is com-
puted as follows:
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Fig. 15. L1 error of a TE62 mode in a cylinder over a single period.
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Fig. 16. L1 error of a TE62 mode in a cylinder over 20 periods. The data has been averages over 100 samples to reduce noise.
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Neither the standard Yee’s method nor the modified scheme is discretely energy conserving due to the tempo-
ral averaging in the energy calculation; however, this should converge second-order with grid spacing. Fig. 17
shows the standard deviation of the energy as a function of grid resolution. As can be seen, the modified



Fig. 18. Qualitative results for both the standard FDTD algorithm (left) and the modified scheme (right) for several different shapes. The
geometry shown in each figure is the computational geometry used for both algorithms with either stair-cased or piece-wise linear
boundaries.
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scheme has a higher variance in energy, but both curves are converging at equal rates. Simulations were al-
lowed to oscillate for 4000 periods and any growth in average energy was undetectable (not shown).

The scheme was tested on more complicated examples as shown in Fig. 18. These examples are designed to
qualitatively test the code for a range of different geometries, all with a degree of radial symmetry. As can be
seen in the three examples, there is a much higher degree of symmetry from vane to vane or peak to peak in the
modified scheme than with the traditional method. Furthermore, especially for the TE62 mode, squaring off
and grid alignment of the features is quite prevalent in the traditional FDTD method and is not present in
the modified scheme.

Long-time stability is a critical feature for most EM simulations. The three cases shown in Fig. 18 were run
for 4000 oscillation periods and their energy averaged over several periods. There is no observed growth in the
average energy over hundreds of thousands of time steps.

5. Conclusions and future directions

A uniformly stable algorithm is proposed to handle small geometry in two-dimensions based on a flux lim-
iting scheme. The scheme is shown to require no time-step penalty (however, higher accuracy was shown if the
time-step is reduced by roughly 11%), have second-order convergence and to require only a one-dimensional
geometric analysis. The scheme is tested for several different physical geometries and shown to produce supe-
rior results in all cases. The beauty of the algorithm is in its simplicity. Limiters are based on a mean distance
from an edge to a wall, computed as part of a preprocessing step and require no additional work in the update
cycle.

The scheme has two areas which cause concern, the first being the initial high truncation error for the
scheme. The second is the energy conserving properties of the method. These two areas have not been shown
to effect overall accuracy or convergence of the method, however, they should be addressed in the future.

There are two major areas where work is currently underway, or planned to begin shortly. Currently we are
attempting to extend this to three-dimensions in a production based code. The algorithm is based on decom-
posing the multi-dimensional update into a series of one-dimensional updates, each with its own limiter based
on a cell averaged one-dimensional geometry. This paradigm can be extended into three-dimensions with one
caveat, the flux limiting must be consistent for an edge. For example Ex affects both By and Bz, and to maintain
the divergence free properties of B, the fluxes must be identical for both By and Bz. Therefore, the limiter has to
be applied consistently to both updates based on the smallest geometric length. In this way one can maintain
divergence free solutions.

In conjunction with the extension to three-dimensions, incorporation of particles is a critical effort to be
undertaken. The addition of currents to this scheme follows a procedure similar to other FDTD codes.
The most important factor is to maintain consistency between the current weighting and the E update to
insure the divergence condition is met. This requires one to scale the current by the local cross-sectional area
prior to updating the electric field.

This scheme holds much promise due to the simplicity of the method, the global stability across all CFL
values without the requirement of an implicit solve and the superior convergence properties.
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